3.Trigonometrical Ratios, Functions and Identities
hard

જો સમીકરણ ${\sin ^2}\theta  = \frac{{{x^2} + {y^2}}}{{2xy}},x,y, \ne 0$ શકય હોય તો 

A

$x = y$

B

$x = \, -y$

C

$2x = y$

D

એકપણ નહીં 

Solution

Now, $\sin ^{2} \theta=\frac{x^{2}+y^{2}}{2 x y}$

$\therefore \mathrm{x},$ $y$ have same sign

$\frac{x^{2}+y^{2}}{2 x y}=\frac{1}{2}\left[(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}})^{2}+2\right] \geq 1$

Now, $\sin ^{2} \theta \leq 1 .$ 

Therefore, $\frac{x^{2}+y^{2}}{2 x y}=1$

$  \Rightarrow x=y$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.